Final Exam Review:

Chapter 5

Section 1 - Solving Systems by Graphing

Solve each system by graphing. Check your answer.

1.
$$\begin{cases} y = x + 4 \\ y = -2x + 1 \end{cases}$$

Solution: (-1,3)

2. $\begin{cases} x - y = -6 \\ 3x + y = 6 \end{cases}$ Solution: (0, 6)

$$y = -2x+1$$
 $\sqrt{\frac{1}{1 - 2x+1}}$
 $M = -2 \text{ rise(fall)} b \text{ (Start on y-axis)}$

I run

$$3x+y=b$$

$$-3x$$

$$y=-3x+b$$

$$m=-3$$

$$b=b$$

Section 2 - Solving Systems by Substitution

Solve each system by substitution. Check your answer.

$$\begin{cases} 3. & \begin{cases} y = x - 2 \\ y = 4x + 1 \end{cases} \end{cases}$$

$$\sqrt{=x-2}$$

$$4x+1=x-2$$

$$3x + 1 = -2$$

$$\frac{3X = -3}{3}$$

5.
$$\begin{cases} y = 3x + 1 \\ y = 5x - 3 \end{cases}$$

$$5x-3 = 3x+1$$

$$y = 3(2) + 1$$

$$-3x$$
 $-3x$

$$Y = b + 1$$

$$Y = 7$$

$$2x - \beta = 1$$

$$+3 + 3$$

$$\frac{2X=4}{2}$$

4.
$$\begin{cases} y = x - 4 \\ y = -x + 2 \end{cases}$$

$$-X+2=X-4$$

$$\frac{b=2x}{2}$$

$$x=3$$

$$y = x - 4$$

 $y = 3 - 4$
 $y = -1$

$$-1 = -(3) + 2$$

6.
$$\begin{cases} 2x + y = 8 \\ y = x - 7 \end{cases}$$

$$2x+(x-7)=8$$

$$3x - 7 = 8$$

$$3x = 15$$

$$\frac{3}{3}$$
 $\frac{1}{3}$

(hick:
$$2(5)+(-2)=8$$

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

Section 3 - Solving Systems by Elimination

Solve each system by elimination. Check your answer.

$$7. \begin{cases} x + 3y = -7 \\ x + 2y = -8 \end{cases}$$

$$5y = -15$$

$$5$$

$$x + 3(-3) = -7$$

 $x + -9 = -7$
 $+9$

$$(2)+3(-3)=-7$$

$$-(2) + 2(-3) = -8$$

$$8. \begin{cases} 3x + y = -26 \\ 2x - y = -19 \end{cases}$$

$$\frac{5x}{5} = \frac{-45}{5}$$

$$X = -9$$

$$X = -9$$
 $-27 + 1 =$ -26 $\sqrt{3}$ $\times + \sqrt{=-26}$

$$-27 + y = -26$$

$$3(-9)+(1)=$$
 $-27+1=$
 -26

$$2(-9)-(1)$$

Check:

$$(2, -3)$$

9.
$$\begin{cases} x + 3y = -14 \\ 2x - 4y = 32 \end{cases}$$

$$-2x - 6y = 28 + 2x - 4y = 32$$

$$-10y = 60$$

 $-10 = -10$
 $y = -6$

$$x + 3y = -14$$

$$X + 3(-6) = -14$$

$$X + -18 = -14 + 18$$

$$X = 4$$

Check:

$$\begin{array}{c|c}
-9 & \\
10. & \\
5x + 3y = -7
\end{array}$$

$$5x + 3y = -7$$

$$5x + 3y = -7$$

$$5x + 3y = -7$$

$$5x + 3(-2) = -7$$

$$\frac{x}{5} = \frac{1}{5}$$

$$-10x + y = 0$$

+2 ($5x + 3y = -7$)

$$-10k + y = 0$$
 $10x + 6y = -14$

$$7y = -14$$

Section 4 - Solving Special Systems

Solve each system of linear equations.

1.
$$y = 2x - 3$$

 $y - 2x = -3$

$$(2x-3)-2x=-3$$

Infinite Solutions

2.
$$\begin{cases} 3x + y = 4 \\ -3x = y - 7 \end{cases}$$

No Solution

3.
$$y = -4x + 1$$

 $4x = -y - 6$

14× +1× = -4× - × 75 +4× +1× - × 1+× 1

$$4x = -(-4x+1) - 6$$
 $4x = 4x-1-6$
 $4x = 4x-7$
 $-4x - 4x$
No Solution

4.
$$\begin{cases} y - x + 3 = 0 \\ x = y + 3 \end{cases}$$

$$y - x + 3 = 0$$

$$y - x = -3$$

$$x - x = -3$$

$$x - x = -3$$

Infinite Solutions

Section 5 - Solving Linear Inequalities

Tell whether the ordered pair is a solution of the given inequality.

641+6

Solution

2. (-3, -12); $y \ge 2x - 5$ 3. (5, -3); $y \le -x + 2$

Not Solution

Solution

Graph the solutions of each linear inequality

4. $y \le x + 4$

5. 2x + y > -2

y > -2x-2
>: dashed line
shade above

6. x+y-1<0

y <-x+1 <: dashed line

- 7. Clark is having a party at his house. His father has allowed him to spend at most \$20 on Shade below snack food. He'd like to buy chips that cost \$4 per bag, and pretzels that cost \$2 per bag.
 - a. Write an inequality to describe the situation.

4x + 2y < 20

b. Graph the solutions.

c. Give two possible combinations of bags of chips and pretzels that Clark can buy. \\ \frac{1}{2} \times +10

Write an inequality to represent each graph.

> : solid line > : Shade above

9.

$$m=3$$

<: dashed line snade below 10.

$$m = \frac{-3}{a}$$
 fall run

< : solid line < : shade below

Section 6 - Solving Systems of Linear Inequalities

Tell whether the ordered pair is a solution of the given system.

1.
$$(2,-2)$$
; $\begin{cases} y < x-3 \\ y > -x+1 \end{cases}$

2. (2, 5);
$$\begin{cases} y > 2x \\ y \ge x + 2 \end{cases}$$

3. (1, 3);
$$\begin{cases} y \le x + 2 \\ y > 4x - 1 \end{cases}$$

Nota Solution

Graph the system of linear inequalities. a. Give two ordered pairs that are solutions. b. Give two ordered pairs that are not solutions.

$$4. \begin{cases} y \leq x + 4 \stackrel{*}{\Rightarrow} \\ y \geq -2x \stackrel{*}{\Rightarrow} \end{cases}$$

5. $\begin{cases} y \le \frac{1}{2}x + 1 & \text{**} \\ x + y < 3 & \text{**} \end{cases}$

6. $\begin{cases} y > x - 4 & \text{with} \\ y < x + 2 & \text{with} \end{cases}$

- 7. Charlene makes \$10 per hour babysitting and \$5 per hour gardening. She wants to make at least \$80 a week, but can work no more than 12 hours a week.
 - a. Write a system of linear equations.

$$10x + 5y \gg 80$$
$$x + y \leq 12$$

 $\frac{1}{5}$ $\frac{10}{5}$ $\frac{10}{5}$

c. Describe all the possible combinations of hours that Charlene could work at each job.

d. List two possible combinations.

Name	Date	Class
------	------	-------