Section 6 - Slope-Intercept Form

Write the equation that describes each line in slope-intercept form.

2. slope =
$$-2$$
; y-intercept = 0

$$y=4x-3$$

$$y=-2x+0=y=-2x$$

3. slope =
$$-\frac{1}{3}$$
; y-intercept = 6

4. slope =
$$\frac{2}{5}$$
, (10, 3) is on the line.

$$3 = \frac{2}{5} \left(\frac{10}{10} \right) + B$$

$$3 = \frac{25}{5} + B$$
Find the y-intercept using $y = mx + b$

$$y=-\frac{1}{3}x+b$$

Write the equation
$$y = \frac{2}{5}x - 1$$

Write each equation in slope-intercept form. Then graph the line described by the equation.

5.
$$y+x=3$$

$$-x$$

$$y=-x+3$$

6.
$$y + 4 = \frac{4}{3}x - 4$$

 $y = \frac{4}{3}x - 4$

7.
$$5x - 2y = 10$$

$$-5x$$

$$-5x$$

$$-5x$$

$$-5x$$

$$-5x$$

$$-5x$$

$$-2x$$

$$-5x + 10$$

$$-2x$$

$$y = 5x - 5$$

Section 8 - Line of Best Fit

1. The data in the table are graphed at right along with two lines of fit.

X	0	2	4	6
У	7	3	4	0

a. Which line is a better fit for the data?_

2. Use the data in the table to find a line of best fit.

X	5	6	6.5	7.5	9
У	0	-1	3	-2	4

a. Find an equation for a line of best fit.

$$y = .78 \times -4.54$$

3.Use the data in the table to find a line of best fit.

_ X		10	8	6	4	2
]	•	
· y		1	1.1	1.2	1.3	1.5

a. Find an equation for a line of best fit. __

$$y = -.06x + 1.58$$

$$b = 1.58$$

Section 10 - Transforming Linear Functions

Graph f(x) and g(x). Then describe the transformation from the graph of f(x) to the graph of g(x).

1. f(x) = x; g(x) = x + 3

Translation: 3 up

2. $f(x) = \frac{1}{3}x - 4$; $g(x) = \frac{1}{4}x - 4$

Rotation: counterclockwise

3. f(x) = x; g(x) = 2x - 5

Translation: 5 down

Rotation: counter-clockwise

4. Graph f(x) = -3x + 1. Then reflect the graph of f(x) across the y-axis. Write a function g(x) to describe the new graph.

y=3x+1

Section 3.5 - Writing Functions

Determine a relationship between the x- and y-values. Write an equation.

1.

X	-4	-3	-2	-1
у	-1	0	1	2

$$\sqrt{=x+3}$$

2. {(2, 3), (3, 5), (4, 7), (5, 9)}

Evaluate each function for the given input values.

7. For f(x) = 5x + 1, find f(x) when x = 2 and when x = 3.

$$f(2) = 5(2) + 1 = 11 + 1 = 12$$

 $f(3) = 5(3) + 1 = 15 + 1 = 16$

8. For g(x) = -4x, find g(x) when x = -6 and when x = 2.

$$\mathcal{L}(-6) = -4(-6) = 24$$

$$9(2) = -4(2) = -8$$

9. For h(x) = x - 3, find h(x) when x = 3 and when x = 1.

$$h(3) = 3 - 3 = 0$$

 $h(1) = 1 - 3 = -2$

$$h(3) = 0$$

$$h(1) = -2$$

Complete the following.

10. An aerobics class is being offered once a week for 6 weeks. The registration fee is \$15 and the cost for each class attended is \$10.Write a function rule to describe the total cost of the class. Find a reasonable domain and range for the function.

$$D = \{0, 1, 2, 3, 4, 5, 6\}$$

$$V = 15 + 10 \times 10^{15}$$

$$R = \{0, 25, 35, 45, 5^5, 65, 75\}_{\text{total}}^{4}$$

$$COST$$